New Equations of State in Simulations of Core-collapse Supernovae

نویسنده

  • M. Hempel
چکیده

We discuss three new equations of state (EOS) in core-collapse supernova simulations. The new EOS are based on the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich (HS), which includes excluded volume effects and relativistic mean-field (RMF) interactions. We consider the RMF parameterizations TM1, TMA, and FSUgold. These EOS are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport. The results obtained for the new EOS are compared with the widely used EOS of H. Shen et al. and Lattimer & Swesty. The systematic comparison shows that the model description of inhomogeneous nuclear matter is as important as the parameterization of the nuclear interactions for the supernova dynamics and the neutrino signal. Furthermore, several new aspects of nuclear physics are investigated: the HS EOS contains distributions of nuclei, including nuclear shell effects. The appearance of light nuclei, e.g., deuterium and tritium is also explored, which can become as abundant as alphas and free protons. In addition, we investigate the black hole formation in failed core-collapse supernovae, which is mainly determined by the high-density EOS. We find that temperature effects lead to a systematically faster collapse for the non-relativistic LS EOS in comparison to the RMF EOS. We deduce a new correlation for the time until black hole formation, which allows to determine the maximum mass of proto-neutron stars, if the neutrino signal from such a failed supernova would be measured in the future. This would give a constraint for the nuclear EOS at finite entropy, complementary to observations of cold neutron stars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new mechanism for gravitational-wave emission in core-collapse supernovae.

We present a new theory for the gravitational-wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric Newtonian supernova simulations, indicate that t...

متن کامل

CFC+: improved dynamics and gravitational waveforms from relativistic core collapse simulations

Core collapse supernovae are a promising source of detectable gravitational waves. Most of the existing (multidimensional) numerical simulations of core collapse in general relativity were done using approximations of the Einstein field equations. As recently shown by Dimmelmeier et al. (2002a, A&A, 388, 917), Dimmelmeier et al. (2002b, A&A, 393, 523), one of the most interesting such approxima...

متن کامل

Computational Models of Stellar Collapse and Core-Collapse Supernovae

Core-collapse supernovae are among Nature’s most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computationa...

متن کامل

Core-collapse supernovae and gravitational waves

Core-collapse supernovae are dramatic events with a rich phenomenology, including gravitational radiation. Simulations of these events in multiple spatial dimensions with energyand angle-dependent neutrino transport are still in their infancy. Core collapse and bounce in a supernova in our galaxy may well be visible by firstgeneration LIGO, but detailed understanding waits on improvements in mo...

متن کامل

Rotational Instabilities in Post–Collapse Stellar Cores

A core–collapse supernova might produce large amplitude gravitational waves if, through the collapse process, the inner core can aquire enough rotational energy to become dynamically unstable. In this report I present the results of 3-D numerical simulations of core collapse supernovae. These simulations indicate that for some initial conditions the post–collapse inner core is indeed unstable. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012